
Structuring Documentation to Support State
Search: A Laboratory Experiment about Protocol

Programming

Joshua Sunshine, James D. Herbsleb, and Jonathan Aldrich

Institute for Software Research, School of Computer Science
Carnegie Mellon University

{sunshine,jdh,aldrich}@cs.cmu.edu

Abstract. Application Programming Interfaces (APIs) often define ob-
ject protocols. Objects with protocols have a finite number of states and
in each state a different set of method calls is valid. Many researchers
have developed protocol verification tools because protocols are notori-
ously difficult to follow correctly. However, recent research suggests that
a major challenge for API protocol programmers is effectively search-
ing the state space. Verification is an ineffective guide for this kind of
search. In this paper we instead propose Plaiddoc, which is like Javadoc
except it organizes methods by state instead of by class and it includes
explicit state transitions, state-based type specifications, and rich state
relationships. We compare Plaiddoc to a Javadoc control in a between-
subjects laboratory experiment. We find that Plaiddoc participants com-
plete state search tasks in significantly less time and with significantly
fewer errors than Javadoc participants.

1 Introduction

Many Application Programming Interfaces (APIs) define object protocols, which
restrict the order of client calls to API methods. Objects with protocols have a
finite number of states and in each state a different set of method calls is valid.
Protocols also specify transitions between states that occur as part of some
method calls. A client of such a library must be aware of the protocol in order
to use it correctly. For example, a file may be in the open or closed state. In the
open state, one may read or write to a file, or one may close it, which causes
a state transition to the closed state. In the closed state, the only permitted
operation is to (re-)open the file.

Files provide a simple example of states, but there are many more examples.
Streams may be open or closed, iterators may have elements available or not,
collections may be empty or not, and even lowly exceptions can have their cause
set, or not. More than 8% of Java Standard Library classes and interfaces define
protocols, which is more than three times as many as define type parameters [1].

Protocols are implemented in mainstream languages like Java with low-level
constructs: the state of an object is tracked with boolean, integer, or enum fields;
violations are checked explicitly and cause runtime exceptions like IllegalState-
Exception; and constraints are specified in prose documentation. It is perhaps

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 157–181, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

158 J. Sunshine, J.D. Herbsleb, and J. Aldrich

unsurprising, therefore, that APIs with protocols are difficult to use. In a study
of problems developers experienced when using a portion of the ASP.NET frame-
work, three quarters of the issues identified involved temporal constraints [19].
Three recent security papers have identified serious vulnerabilities in widely used
security applications resulting from API protocol violations [14,4,28].

Many researchers have developed protocol checkers which are designed
to make it easier for programmers to correctly use APIs with protocols
(e.g. [3,10,13]). These tools require programmers to specify protocols using alias
and typestate annotations that are separate from code. To automate the annota-
tion process, several tools mine protocol specifications using dynamic analysis [8]
or static analysis [2,36]. A recent survey of automated API property inference
techniques described 35 inference techniques for ordering specifications [24].

However, the qualitative studies described in [31, ch.3] found that program-
mers using API protocols spend their time primarily on four types of searches of
the protocol state space. Protocol checker output is unlikely to help programmers
perform many of these searches.

Instead, in this paper we introduce a novel documentation generator called
Plaiddoc, which is like Javadoc except it organizes methods by state instead of by
class and it includes explicit state transitions, state-based type specifications, and
rich state relationships. Plaiddoc is extracted automatically from the standard
Javadoc annotations plus new Plaiddoc specifications. Plaiddoc is named for the
Plaid programming language [32], which embeds similar state-oriented features,
and from which Plaiddoc could, in principle, be automatically generated. We
evaluate Plaiddoc against a Javadoc control in a 20-participant between-subjects
laboratory experiment.

The experiment attempts to answer the following five research questions:

RQ1. Can programmers answer state search questions more efficiently using
Plaiddoc than Javadoc?

RQ2. Are programmers as effective answering non-state questions using Plaid-
doc as they are with Javadoc?

RQ3. Will programmers who use Plaiddoc answer state search questions more
correctly than programmers who use Javadoc?

RQ4. Will programmers get better at answering state search questions as they
get more practice?

RQ5. Are programmers who use Plaiddoc better than programmers who use
Javadoc at mapping general state concepts to API details?

All of the tasks performed by participants asked participants to answer a ques-
tion. We therefore use the words task and question interchangeably in the rest of
this paper. Most of these questions were instances of four state search categories
discovered in two earlier, qualitative studies [31]. Some of the questions were not
state related and were chosen to benefit Javadoc. Task ordering was alternated
to measure learning effects, and a post-study quiz was administered to gauge
concept understanding.

Participants using Plaiddoc completed state tasks in 46% of the time it took
Javadoc participants, but were approximately equally fast on non-state tasks.

Structuring Documentation to Support State Search 159

Plaiddoc participants were also 7.6x less likely to answer questions incorrectly
than Javadoc participants. Finally, Plaiddoc and Javadoc participants were ap-
proximately equally able to map state concepts to API details. Nevertheless, our
overall results suggest that Plaiddoc can provide a lightweight mechanism for
improving programmer performance on state-related tasks without negatively
impacting traditional tasks.

More broadly, the results of this study also provide indirect support for several
programming language design choices. This study provides quantitative evidence
for the productivity benefits of type annotations as documentation and state-
oriented language features.

2 Background and Related Work

The seminal paper entitled “Why a diagram is (sometimes) worth ten thousand
words,” [21] introduces a computational model of human cognition to compare
informationally equivalent diagrams and text. They demonstrate in this model
that solving math and physics problems with text-based information can require
many more steps than solving the same problems with diagrams. The most
important difference between the diagram steps and text steps is that much more
effort in text is spent searching for needed details. One particularly noteworthy
reason for the search difference is that diagrams often collocate details that are
needed together.

Larkin and Simon’s theory has been effectively applied to many other (non-
diagramatic) information contexts. For example, Chandler shows in a series of ex-
periments that integrated instructional material and the removal of non-essential
material can facilitate learning in a variety of educational settings [5] . There are
many more closely related examples: Green [15] develops cognitive dimensions
to evaluate visual programming languages, the GOMS [20] model has proven
effective at predicting user response to graphical user interfaces (GUIs), and
MCRpd [34] models physical representations of digital objects.

The results of two studies of API design choices are best understood through
Larkin and Simon’s search lens. It is easier for programmers to use construc-
tors to create instances than factory methods, because constructors are the de-
fault and are therefore the start of any search [11]. Methods that are located in
the class a programmer starts with are easier to find than methods in related
classes [30]. The impact of small design changes shown in these papers empha-
sizes the importance of information seeking on API usability, and suggests that
a similar impact may be possible with other small interventions.

All of this research suggests that there is an opportunity to modify an API
artifact to create an informationally equivalent alternative that will improve
programmer performance with protocol search. Which artifact? Which changes
will be most effective? To answer these questions it is useful to look at the
interventions that have proven effective with other complex APIs.

One effective way to learn to use an API is to find a related example. A
study of programmers using reusable Smalltalk GUI components and found that

160 J. Sunshine, J.D. Herbsleb, and J. Aldrich

participants “relied heavily on code in example applications that provided an
implicit specification for reuse of the target class.” The significance of examples
encouraged researchers to develop example repositories to enable programmers
to find examples easily [23,37]. Unfortunately, the effectiveness of these reposi-
tories was limited by the retrieval mechanism which required too much (and too
complex) input from programmers.

More recently, MAPO [38] and Strathcona [18] automatically retrieve exam-
ples from the structure of the program the programmer is writing. In a controlled
experiment, participants using MAPO produced code with fewer bugs than par-
ticipants in other conditions. This result is notable because it shows that API in-
terventions can produce higher quality responses, not just more rapid responses.

The eMoose IDE plugin has proven similarly useful to developers using com-
plex API specifications [9].The eMoose tool pushes directives—rules required to
use a method correctly—to the method invocation site. The concrete rules that
make up a protocol (e.g. one cannot call setDoInput on a connected URLCon-
nection) are examples of directives. Dekel’s evaluation of eMoose demonstrated
significant programmer performance improvements during library-usage tasks
(including one library with a protocol).

Unfortunately, examples and directives are labor intensive for API designers
to produce. In large complex APIs it is often impossible to generate examples
for every possible use case. Even after they are produced, it is hard to keep them
in sync with the API as it changes, because there is no mechanism to enforce
conformance. Examples can also serve as a crutch toward learning, and the most
effective students learn to generate their own examples [6].

The design of Plaiddoc is inspired by all of the research discussed in this
section. We modify Javadoc to produce an informationally equivalent documen-
tation format aimed at facilitating speedier state search. Plaiddoc is generated
from specifications whose conformance with code can be checked automatically.
Plaiddoc specifications, like eMoose directives, are co-located with each method.
The specifications themselves contain just the right state details so program-
mers can generate their own examples of correct API usage. The details of the
Plaiddoc design are discussed in the next section.

3 Plaiddoc

To follow the rest of this paper, it is important to understand the design of
Plaiddoc. To do so, it is necessary to first explain Javadoc. Javadoc is a tool for
generating HTML documentation for Java programs. The documentation is gen-
erated from Java source code annotated with “doc comments” which contain both
prose description and descriptive tags which tie the prose to specific program
features. For example, a doc comment on a method will describe the method in
general and then provide tags and associated comments for the parameters, the
return value, and/or any exception the method throws.

The webpage generated by Javadoc for a class has six parts. The top and
bottom contain navigation elements which allow the reader to quickly browse

Structuring Documentation to Support State Search 161

to related documentation. The class description appears below the navigation
elements at the top of the page. It states the name of the class and links to
superclasses and known subclasses. It then follows with an often long description
which can include: the purpose of the class, how it is used, examples of use, class-
level invariants, relationships to other classes, etc.

After the class description, the page includes four related elements: the field
summary, method summary, field details, and method details. The field summary
is a table containing the modifier, type, name, and short description of each
public field sorted in alphabetical order. The method summary is extremely
similar: it shows the modifier, return type, method name, type and name of all
parameters, and short method description in alphabetical order. The field and
method details show each field (or method) in the order they appear in the source
file with the full description including historical information and any tags.

The Plaiddoc generated webpage maintains all of the look and feel of the
Javadoc page. The fonts, colors, and visual layout are identical. However,
the method summary section is restructured and extra information is added
to the method details section. The full ResultSet page is available on the web.1
The screenshot shows the method summary for the top-level Result state and
the Open state.

As in Plaid, methods in the summary are organized by abstract state. In
Javadoc, there is one table containing all of the methods of a class, while in
Plaiddoc there is one table per abstract state. For example, the Disconnected
state of URLConnection has a table containing all of the methods available in
it, including setDoInput and connect.

One important rule we followed when designing Plaiddoc is that there is
exactly one Plaiddoc page per Javadoc page. This rule ensures that the any
observed differences between participants using Plaiddoc and Javadoc is a con-
sequence of Plaiddoc’s extra features and not the result of differences in page
switching. There are two consequences of this rule: 1) All of the possible states
of single Java class appear in the same Plaiddoc page.2 2) Multi-object proto-
cols appear in multiple Plaiddoc pages. Six of the tasks in this study involve
the Timer and TimerTask classes which impose a multi-object protocol. In these
tasks, Javadoc participants were given two pages and Plaiddoc participants were
given two pages.

An automatically generated diagram which shows all of the states of the
class and where the particular state fits in, appears above each state table. The
current state is bolded and italicized, while other states are displayed in the
standard font. This diagram is primitive; it does not contain extensive capa-
bilities like hyperlinks from state names to state tables, collapsing/expanding
children, transition arrows, or even a nice graphical look. The diagram is prim-
itive for three reasons: 1) Plaiddoc was designed for this experiment, and was
therefore not polished for use outside the laboratory. 2) More capabilities gives

1 http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/
PlaiddocResultSet.html

2 e.g. The “Open” and “Closed” states of ResultSet appear on a single page.

http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/PlaiddocResultSet.html
http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/PlaiddocResultSet.html

162 J. Sunshine, J.D. Herbsleb, and J. Aldrich

participants more potential paths to solve tasks and thus introduces variation
into the study. 3) If one adds features it is harder to understand which par-
ticular features are important or unimportant. Plaiddoc was designed with the
minimum set of features we believed would be an effective group.

The Plaiddoc page also contains two new columns in the method details table.
These columns are state preconditions and postconditions. The only valid pred-
icates are state names, state names with a parameter, or combination of the two
separated by the AND or OR logical operators. For example, “Disconnected,”
“Scheduled task,” and “Updatable AND Scrollable” are valid preconditions or
postconditions but “value > 0” is not. The same information is added to the
method summary. The state to which a method belongs is an implicit precondi-
tion for that method. For example, the close method lists no preconditions, but
since it belongs to the Open state, the ResultSet must be in the Open state to
call the close method.

To generate a Plaiddoc class page, the Plaiddoc tool requires three inputs: the
class’s Javadoc page, a JSON file specifying the state relationships of the class,
and a JSON file containing preconditions and postconditions for each method
and mapping methods to states. Sample JSON files are available on the web.3

The JSON files are very simple. The state file must contain a single object
whose fields are states, each of which must contain either an “or-children” or “and-
children” field. These “children” fields are arrays containing state names, which
in turn must be defined in the same file. The methods file must contain an array
of method objects which contain four fields: “name” (including parameter types
to distinguish statically overloaded methods), “state” (which must map to a state
defined in the state file), “pre” for preconditions, and “post” for postconditions.

It is important to map the features of Plaiddoc just described to concepts, in
order to understand the implications of the experiment described here on other
research (e.g. the Plaid language itself). Plaiddoc organizes methods by state
instead of by class, by separating the method summary table by state. Plaiddoc
makes state transitions explicit when state postconditions differ from precondi-
tions. The Plaiddoc preconditions and postconditions make use of state-based
type specifications. Finally, rich state relationships are displayed to programmers
at the top of each method table. See e.g. the “State relationships" box.

4 State Search Categories

As we mentioned in Section 1, an earlier two-part qualitative study of the bar-
riers programmers face when using APIs with protocols feeds directly into the
methodology of the study in this paper [31, ch. 3]. In the first part of that study,
we mined the popular developer forum StackOverflow for problems developers
have using APIs with protocols. In the second part, they performed a think-
aloud observational study of professional programmers in which the programers
worked through exactly the problems uncovered in the first part.
3 http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/Car_States.json and
http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/Car_Methods.json

http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/Car_States.json
http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/Car_Methods.json

Structuring Documentation to Support State Search 163

In this second part, they analyzed each task, by assigning task time to partici-
pant questions or comments and performing open coding on the transcript. This
analysis showed that programmers in spent 71% of their total time answering
instances of four question categories. We list here each general category followed
by two specific instances of that category drawn from the study transcripts:

A What abstract state is an object in?
– “Is the TimerTask scheduled?”
– “Is [the ResultSet] x scannable?”
B What are the capabilities of an object in state X?
– “Can I schedule a scheduled TimerTask?”
– “What can I do on the insert row?”
C In what state(s) can I do operation Z?
– “When can I call doInput?”
– “Which ResultSets can I update?”
D How do I transition from state X to state Y?
– “How do I get off the insert row to the current row?”
– “Which method schedules the TimerTask?’

These search problems are all specific to protocols, and therefore the protocol
tasks are dominated by state search. Most of the tasks performed by participants
in this study are instances of these general categories.

5 Methodology

The experimental evaluation of Plaiddoc uses a standard two by two between-
subjects design, with five participants in each of the four conditions. The experi-
ment compares Plaiddoc to a Javadoc control and presents two task orderings to
measure learning effects. The recruitment, training, experimental design, tasks,
and post-experiment interview are presented in the following sections. All of the
study materials can be found in Appendix C [31].

5.1 Recruitment

All 20 participants were recruited on the Carnegie Mellon campus. Half of the
participants responded to posters displayed in the engineering and computer
science buildings. The other half were solicited in-person in a hallway outside
classrooms which typically contain technical classes. Participants were screened
for Java or C# knowledge and experience with standard API documentation.
Participants were paid $10 for 30-60 minutes of their time. The 20 participants
that made it past the screening all completed the study.

Twelve of the participants were undergraduate students, all of whom were ma-
joring in computer science, electrical and computer engineering, or information
systems. The other eight were masters students in information systems or com-
puter engineering programs. Eleven students had no professional programming
experience outside summer internships, five students had one year of full-time
professional experience, and four had more than one year of experience.

164 J. Sunshine, J.D. Herbsleb, and J. Aldrich

Fig. 1. Car state machine used for participant training

5.2 Training

After signing consent forms, participants were given approximately 10 minutes
of training. Every participant, regardless of experimental condition, received
exactly the same training. The training was read from a script to help ensure
uniformity.

All participants were familiar with Javadoc, but the training included an
explanation of both Javadoc and Plaiddoc to ensure baseline knowledge in both
formats. The goal of this study is to compare the impact of the documentation
formats on state search tasks, not the impact of training. Therefore, we kept
training consistent to avoid a confounding factor. All of the state concepts are
first taught via UML state machines, then Javadoc, then Plaiddoc.

The training materials introduce participants to the basic concepts of object
protocols and to the documentation formats used in the study. The training
makes concepts concrete using a Car API we constructed for the purpose. Re-
garding protocols, participants learn:

– that methods are available in some states and not others
– that some methods transition objects between states
– that states can be hierarchical
– that child states can be either or-children or and-children

These concepts were reinforced by asking participants simple, scripted ques-
tions about the Car API. The questions were designed to be answerable very
quickly by participants. We created a UML state machine (shown in Figure 1),
Javadoc documentation, and Plaiddoc documentation for the Car API and these
were printed and handed to participants.

The top-level state for Car objects (named “Car”) has three and-children,
each of which has two or more or-children: gear to represent the car’s manual

Structuring Documentation to Support State Search 165

transmission, brakes to represent whether the car is braking or not, and option
to represent whether the car has the “turbo” option or not. We used these states
to introduce state hierarchy, or-states, and and-states. We introduced transitions
via brakes. One can transition to the “Braking” state from the “NotBraking” state
by calling the “putFootDown” method. The openTrunk method, which does not
change the gear state, introduces state-dependent methods. In the example, like
in many real-world cars, one can only open the trunk when the car is in the
neutral gear.

Like all and-children, the car’s three substates are independent, in the sense
that changing the gear state has no effect on the braking or option states. How-
ever, one unique wrinkle in the example is that the turbo state enables a fifth
gear substate of gear that is not available otherwise. The toFifth method has
two preconditions — the car must be in the neutral gear and it must have the
turbo option. In the study tasks discussed later, some of the ResultSet methods
also have multiple preconditions.

5.3 Experimental Setup

Participants were asked 21 questions about three Java APIs: 1) Six questions
about java.util.Timer and java.util.TimerTask. We refer to these questions
as the Timer questions throughout the rest of this paper. 2) Ten questions about
java.sql.ResultSet. 3) Five questions about java.net.URLConnection. The
experimenter read each question aloud and handed the participant a piece of
paper with the same question written on it.

Participants were seated in front of a computer, and asked to answer the ques-
tion by looking at documentation on the computer screen. The experimenter
opened the documentation for the participant in a browser window. Both the
Javadoc and Plaiddoc documentation were opened from the local file system to
present a consistent URL and to prevent network-related problems. The com-
puter screen and audio (speech) were recorded with Camtasia.

Half of the participants were shown standard Javadoc documentation for all
questions and half Plaiddoc documentation. Participants were allowed to make
use of the browser’s text search (i.e. Control-F). However, they were not allowed
to use internet resources (e.g. Google, StackOverflow).

We chose a between-subjects design to control for cross-task contamination.
Many software engineering studies use within-subjects designs to reduce the
noise from individual variability. We guessed based on pilot data that individ-
ual variability in our study would be relatively low and we therefore opted for
the cleaner between-subjects design. As we will see in §6, the study was suffi-
ciently sensitive to distinguish between conditions so our guess turned out to be
accurate.

Questions were asked in batches — all of the questions related to a particular
API were asked without interruption from questions about another API. Within
each batch, each question was asked in the same order to every participant.
However, half of the participants were asked the Timer batch first and half
were asked the UrlConnection batch first. The ResultSet batch always appeared

166 J. Sunshine, J.D. Herbsleb, and J. Aldrich

second and the remaining batch appeared third. We wanted the Timer and
URLConnection batches to each appear last so we could measure the learning
effects on those batches. All other ordering was uniform across conditions to
avoid unnecessary confounding factors.

The study had a total of four between-subjects conditions: Plaiddoc with
Timer first (condition #1), Plaiddoc with URLConnection first (condition #2),
Javadoc with Timer first (condition #3), and Javadoc with URLConnection first
(condition #4). Participants were assigned to conditions based on the order they
appeared in the study. The nth participant was assigned to condition #n modulo
4. Using commonly accepted practice, participants were assigned to conditions
pseudorandomly, in the order they arrived. Therefore, there were exactly five
participants in each condition.

5.4 Tasks

The 21 questions asked of the participants are shown in Table 1. Sixteen of the
questions were instances of the four categories of state search enumerated in §4.
Since these questions are state specific, we refer to them as the state questions.
The remaining five questions were non-state questions, which were designed to
be just as easy or easier with Javadoc than Plaiddoc. These questions were
not about states or protocols, and we therefore refer to them as the non-state
questions.

We selected the state questions with a three-phase process. First, we gener-
ated all of the instances of the general categories we could think of for each API.
Second, since we did not want the answer or the process of answering one ques-
tion to affect others, we removed questions which were not independent. Some
additional non-independent questions were removed during piloting. Third, we
pruned the ResultSet questions to include two instances of each question cate-
gory by random selection. The study was too long with the full set of ResultSet
questions.

The final question set includes three instances of A) “What abstract state is
an object in?”, five instances of B) “What are the capabilities of an object in
state X?”, four instances of C)“In what state(s) can I do operation Z?’,’ and
four instances of D) “How do I transition from state X to state Y?” Participants
in all conditions were given a glossary listing all of the states of the API in
question with a short description of each. Participants were instructed to answer
questions in categories A and C with the name of a state from the glossary. In
other words, these questions were multiple choice.

The names of states in the glossary matched those in Plaiddoc. The names
themselves were taken from the Javadoc as much as possible. We did not want
to disadvantage Javadoc unnecessarily, so we tried to make it as easy as possi-
ble for participants to perform the mapping from the prose description in the
Javadoc to the state names in the glossary. In two cases there was no obvious
name to give the state from the Javadoc. First, we called a URLConnection that
has not yet connected “Disconnected,” which is a word that appears neither in
the Javadoc nor the Java source code. Second, we called a TimerTask that is

Structuring Documentation to Support State Search 167

Table 1. Category, identifier and question text for all of the questions asked of partici-
pants in the main part of the study. Questions with identifiers beginning with T involved
java.util.Timer and java.util.TimerTask, R involved java.sql.ResultSet, and U
involved java.net.URLConnection.

Cat. ID Question text
T T-1 How do I transition a Timer Task from the Virgin state to the Scheduled

state?
N T-2 What is the effect of calling the purge method on the behavior of the Timer?
C T-3 What methods can I call on a Scheduled TimerTask?
N T-4 What is the difference between schedule(TimerTask task, long delay, long

period) and scheduleAtFixedRate(TimerTask task, long delay, long period)?
O T-5 What state does a TimerTask need to be in to call scheduledExecution-

Time?
C T-6 Can I schedule a TimerTask that has already been scheduled?
N R-1 How is a ResultSet instance created?
C R-2 Can I call the getArray method when the cursor is on the insert row?
O R-3 What state does the ResultSet need to be in to call the wasNull method?
T R-4 How do I transition a ResultSet object from the ForwardOnly to the Scrol-

lable State?
O R-5 Which states does the ResultSet need to be in to call the updateInt method?
A R-6 What state is the ResultSet object if a call to the next method returns

false?
T R-7 How do I transition a ResultSet object from the CurrentRow to the In-

sertRow state?
N R-8 Why does getMetadata take no arguments and getArray take a int

columnIndex or String columnLabel as an argument?
C R-9 Can I call the isLast method on a forward only ResultSet?
A R-10 What states could the ResultSet object in when a call to the next method

throws a java.sql.SQLException because it is in the ResultSet is in the
wrong state?

A U-1 What state is the URLConnection in after successfully calling the getCon-
tent method?

C U-2 If the URLConnection is in the connected state can I call the setDoInput
method?

N U-3 How do I create a URLConnection instance?
O U-4 What state does the URLConnection need to be in to call the getInput-

Stream method?
T U-5 What method transitions the URLConnection from the Connected to the

Disconnected state?

Category definitions
A Instance of the “What abstract state is an object in?” question category.
C Instance of the “What are the capabilities of an object in state X?” question cate-

gory.
N Instance of the non-state question category.
T Instance of the “How do I transition from state X to state Y?” question category.
O Instance of the “In what state(s) can I do operation Z?” question category.

168 J. Sunshine, J.D. Herbsleb, and J. Aldrich

unscheduled, “Virgin” even though this word never appears in the Javadoc. In
this case we borrowed the word from the implementation code—the state of a
TimerTask is encoded with an integer, and the integer constant used for an un-
scheduled TimerTask is called VIRGIN. Finally, we wrote all of the descriptions
to succinctly explain the meaning of the state name.

All of the non-state questions require understanding a non-state detail of the
API or comparing two details. Since the Plaiddoc API documentation is larger
than the Javadoc documentation one might expect that it would be slightly eas-
ier to answer these questions with Javadoc. Two of the non-state question are in-
stances of “how do I create an instance of classX?”, two ask participants to compare
two methods (in one case the methods were in different states), and one asks par-
ticipants to understand non-state details of the behavior of an individual method.

Participants were instructed to “find the answer to each question in the doc-
umentation and tell the experimenter the answer as soon as you have found it.”
Whenever a participant answered a question for the first time, the experimenter
asked,“is that your final answer?” Participants were limited to ten minutes per
task. The experiment proceeded to the next task whenever a participant an-
swered a question and confirmed it or the time limit was reached. Participants
were not told whether their answer was correct and the experiment proceeded
regardless of answer correctness.

5.5 Post-experiment Interview

After completing the experiment participants were asked four questions to see
how well they could map the state concepts we trained them about before the
study (e.g. and-states, or-states, state hierarchy, impact of transitions on and-
states) to the particular APIs they saw in the study. For example, we asked
"What is an example of two ResultSet and-states?" Participants were also asked
to rate their affinity to the documentation they used, and if they used Plaiddoc
to compare Plaiddoc to Javadoc on a five point Likert scale. Then they were
asked “Which documentation format that you learned about before the study—
Javadoc, Plaiddoc, or UML state diagram—do you think would have been most
helpful to complete this study?” Finally, some individuals were also asked addi-
tional questions about their task performance at the experimenter’s discretion.

6 Results

In this section, we discuss the study results and try to give the best evidence to
answer the research questions presented in the introduction. We first compare
the task completion performance of Plaiddoc and Javadoc participants. Then
we compare the correctness of these responses provided by those same groups.
We follow with an evaluation of the learning effects of performing study tasks.
Finally we discuss the post-study interview and pilot results. Raw timing and
correctness data is available on the web.4
4 http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/
RawPlaiddocStudyData.pdf

http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/RawPlaiddocStudyData.pdf
http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/RawPlaiddocStudyData.pdf

Structuring Documentation to Support State Search 169

JavaDoc PlaidDoc

10
15

20
25

30
35

(a) State related tasks

Documentation type

Ti
m

e
(m

in
ut

es
)

JavaDoc PlaidDoc

4
5

6
7

8
9

(b) Non-state related tasks

Documentation type

Ti
m

e
(m

in
ut

es
)

Fig. 2. Box plot comparing the completion time of Javadoc and Plaiddoc participants

6.1 Task Completion Time

In this subsection we discuss the results related to the task completion time out-
put variable. This output variable addresses RQ1 and RQ2 (Can programmers
answer state search questions more efficiently using Plaiddoc than Javadoc? and
Are programmers as effective answering non-state questions using Plaiddoc as
they are with Javadoc?) by comparing task completion times across conditions.

To determine completion time we analyzed the video and marked when we
finished reading the task question and when the participant confirmed his or her
“final answer.” The difference between these two marks was noted in the task
completion time.

The ten-minute task time limit was reached by many participants on question
R-4, but never on any other question. In fact, only two participants exceeded five
minutes while answering any other question, and they did so for only one question
each. Timeouts are not directly comparable to other timing data, and therefore
we evaluate question R-4 separately, and in detail, in §6.2. This subsection does
not include data from question R-4.

The total completion time for each of the Plaiddoc and Javadoc participants
on state questions is visualized by the box plot in Figure 2(a), and for non-state
question in Figure 2(b). A two-factor fixed-effects ANOVA revealed no significant
interaction between documentation type and task ordering (p=0.25) on total
task completion time. Therefore, we compare all 10 Plaiddoc participants against
their 10 Javadoc counterparts.

170 J. Sunshine, J.D. Herbsleb, and J. Aldrich

The mean total completion time of all state search tasks was 10.3 minutes
in the Plaiddoc condition, and 22.4 minutes in the Javadoc condition (2.17x
difference). An independent samples two-tailed t-test revealed that the difference
is statistically significant (p < 0.001). The difference between the means was 12.1
minutes, and 95-percent confidence interval was 6.38 to 17.8 minutes.

The mean completion time of non-state tasks was 5.77 minutes in the Plaid-
doc condition, and 5.95 minutes in the Javadoc condition. Unsurprisingly, this
difference is not statistically significant (p=0.802). The 95-percent confidence
interval of the difference is -1.32 to 1.68 minutes.

The four state search categories can be subdivided into two categories. In two
of the search categories, a participant begins his or her search at a state and
tries to find a method.5 In the other two search categories the participant starts
at a method or other detail (e.g. exception, instance creation), and tries to find
a state.6 Since methods are organized in Plaiddoc by state one would expect
that Plaiddoc would improve performance primarily for searches that proceed
from a state to a method. This hypothesis turns out to be correct — Plaiddoc
outperformed Javadoc in these categories by 2.41x. However, one might expect
that Plaiddoc would not be helpful in the method first categories, but Plaiddoc
outperformed Javadoc by 1.87x in these categories. Therefore, Plaiddoc appears
to be more helpful for state-first search than method-first search. We performed
two factor, fixed-effects ANOVA in which the two factors are documentation type
and search type and the output variable is time. The interaction term between
documentation type and search type is only marginally significant (p=0.089).

Demographics. We did not balance participants in conditions by any demo-
graphic factor. By random chance, six of nine students with experience and three
of four with more than one year of experience were assigned to the Javadoc con-
ditions. However, experience had no significant impact on the timing results. A
two-factor ANOVA where the two factors were experience and documentation
type showed no significant effects from experience (F=.058, df=1, p=.813) or the
experience by documentation type interaction term (F=1.34, df=1, p=.719).

Feature Comparison Discussion. Every participant used text-search (i.e.
CTRL-F in the browser window) to find method names. They then used the
location in a state box, pre-conditions, post-conditions, and state relationship
diagrams to answer the question efficiently. Plaiddoc is like Javadoc except it
organizes methods by state instead of by class and it includes explicit state
transitions, state-based type specifications, and rich state relationships. The dif-
ference in relative performance between the state categories allows us to (very
roughly) compare the benefits of state organization to the other three features.
Since the method based search does not benefit from the state-based organiza-
tion, all of the performance differences observed in the method based search tasks
5 What are the capabilities of an object in state X? How do I transition from state X

to state Y?
6 What abstract state is an object in? In what state(s) can I do operation Z?

Structuring Documentation to Support State Search 171

Table 2. Correctness results for each participant on the 16 state search questions

Paricipant # Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Pdoc Jdoc

DocType P P J J P P J J P P J J P P J J P P J J P J
Correct 15 15 14 16 15 16 15 14 15 15 14 14 15 15 16 16 15 15 11 13 151 143
Incorrect 1 0 2 0 0 0 1 1 0 0 2 2 1 0 0 0 0 0 5 2 2 15
Timed-out 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 7 2

are likely to derive from explicit state transitions, state-based type specifications,
and rich state relationships. The extra performance of the state based search is
likely to derive from the state-based organization. We do not think it’s possible
to separate the benefits of the embedded state diagram from the preconditions
and postconditions. In one early pilot we did not include the state diagram and
the participant struggled to answer questions that required knowledge of state
relationships. Similarly, a state diagram without detailed information about the
requirements and impact of method calls would likely not be effective.

6.2 Correctness

Almost half of the participants provided at least one wrong “final” answer to
a state-search question. Among the 320 total answers provided to the 16 state
search questions 294 were correct, 17 incorrect, and nine were not provided
because the question timed out. In this subsection, we compare the correctness
of Plaiddoc answers to Javadoc answers (RQ3). The number of right, wrong,
and timed-out answers for each participant are shown in Table 2.

Only two of the 17 wrong answers were provided by Plaiddoc participants.
Plaiddoc participants answered 98.75% of the questions correctly, and Javadoc
participants answered 90.5% correctly. The odds ratio in the sample is 7.92.7 We
analyzed the contingency table of Javadoc vs. Plaiddoc and Correct vs. Incorrect
using a two-tailed Fisher’s exact test. The contingency table is shown in Table 2
in the rows labeled “Correct” and “Incorrect” and the columns labeled “Pdoc”
and “Jdoc”. The test revealed that the difference is very significant (p=0.002).
The 95-percent confidence interval of the odds ratio is 1.78 to 72.1.

Incorrect Responses. All of the wrong answers and time-outs were provided
to just five of the 16 state questions. No wrong answers were provided to any of
the non-state questions. It is worth discussing the content of the wrong answers
to provide insight into the types of problems programmers face when answering
state-related questions.

In response to question T-3, a Plaiddoc participant (#19) incorrectly sug-
gested that none of the TimerTask methods could be called on a scheduled

7 The odds ratio is a standard metric for quantifying association between two proper-
ties. In our example, it is the ratio of the odds of being correct when using Plaiddoc
to the odds of being correct when using Javadoc.

172 J. Sunshine, J.D. Herbsleb, and J. Aldrich

TimerTask because “the methods are called by the Timer.” This participant
correctly noted the main mode of usage, but incorrectly assumed this was the
exclusive mode of usage.

In response to question T-5, three8 Javadoc participants incorrectly suggested
that TimerTask scheduledExecutionTime can be called in any state when in fact
it can only be called in the executed state. Three of these wrong participants
noted correctly that scheduledExecutionTime does not throw an exception. Un-
fortunately, not every protocol violation results in an exception, a fact that was
noted in pre-test training.9 In this case, the protocol is documented in the de-
scription of the return value, which is described as “undefined if the task has
yet to commence its first execution.” In the post-experiment interview all three
incorrect participants said that they did not notice this return value description.

In response to T-6, two Javadoc participants incorrectly replied that one
can schedule an already-scheduled TimerTask. Participant #19 answered very
quickly (15 seconds) without thoroughly examining the documentation. Partici-
pant #8 read aloud from the documentation, noting that the method throws an
IllegalStateException “if task was already scheduled or cancelled, timer was can-
celled, or timer thread terminated.” However, #8 somehow skipped “scheduled
or” while reading.

Three Javadoc participants and one Plaiddoc participant incorrectly answered
U-5. The question asks, “What method transitions the URLConnection from
the Connected to the Disconnected state?” There is no such method, as 16
participants correctly noted. The three incorrect Javadoc participants suggested
one could transition the URLConnection to the Disconnected state by calling
its setConnectionTimeout method with 0 as the timeout value argument. This
method “sets a timeout value, to be used when opening a communications link to
the resource referenced by this URLConnection. If the timeout expires before the
connection can be established, a java.net.SocketTimeOutException is raised.”
Therefore, setConnectionTimeout has no impact at all on a URLConnection
instance that has already connected. Participant #1, a Plaiddoc participant,
incorrectly answered that the non-existent “disconnect” method could be used
to transition the URLConnection. This was the last question that participant
#1 answered, so perhaps #1 was ready to leave and so didn’t investigate this
question thoroughly.

Finally, R-4 produced the most varied responses. The question asks the par-
ticipant to transition a ResultSet object from the ForwardOnly to the Scrollable
state. However, no transition is possible since ForwardOnly and Scrollable are
type qualifiers and therefore are permanent after instance creation. Seven Plaid-
doc and two Javadoc participants never answered this question because they
timed out. One Plaiddoc and five Javadoc participants answered the question

8 Participant #19 also answered T-5 incorrectly because, as in question T-3, #19
thought all TimerTask “methods are called by the Timer” including scheduledAt-
FixedRate.

9 The openTrunk method’s protocol is documented by its description of the return
value Javadoc training materials.

Structuring Documentation to Support State Search 173

incorrectly. Many of the timed-out Plaiddoc participants considered but then
ultimately rejected the incorrect answers provided by the Javadoc respondents.
This suggests that the specifications provided by Plaiddoc participants can pro-
vide confidence that an answer is incorrect. The Plaiddoc participants likely
traded no-answers for incorrect answers.

Four Javadoc participants incorrectly answered that the setFetchDirection
method will transition a ResultSet object from the ForwardOnly to the Scrollable
state. Unfortunately, this method does no such thing, instead it "gives a hint as
to the direction in which the rows in this ResultSet object will be processed."
These four participants did skim the description, but it seems that they relied
primarily on the method name to make their determination.

One Javadoc and one Plaiddoc participant noticed the following sentences in
the class description: "A default ResultSet object is not updatable and has a
cursor that moves forward only ... It is possible to produce ResultSet objects
that are scrollable." which is immediately followed by a code example in which
the createStatement method is called on TYPE_SCROLL_INSENSITIVE as
an argument on a connection instance. Upon reading this, both participants
immediately answered that the createStatement method should be called on a
ResultSet instance. The Plaiddoc participant even suggested that the createS-
tatement was missing from the method details list because "Plaiddoc is just a
prototype."

Questions U-5 and R-4 both ask participants to find a method that does not
exist. These questions, like all state-search questions in the study, are derived
from the questions participants asked in the observational study discussed in
Sunshine [31, ch.3]. However, participants in empirical studies are well-known to
be compliant to experimenter demands. Therefore, some may therefore consider
them to be “trick” questions. If these questions are excluded, then Plaiddoc par-
ticipants answered 140 state-search questions correctly (100%) and 0 incorrectly
while Javadoc participants answered 133 correctly (95%) and 7 incorrectly. A
two-tailed Fisher’s exact test of this contingency table is statistically significant
(p=0.014). Since Plaiddoc participants in this sample answered every question
correctly, the odds ratio is infinite. The 95-percent confidence interval of the
odds ratio is 1.48 (the corresponding value is 1.78 when including every state-
search question) to infinity (7.92 when including state-search question). There-
fore, Plaiddoc participants were significantly more likely to respond correctly
than Javadoc participants even when excluding “trick” questions.

Discussion. Three themes emerge from the incorrect and timed-out answers
provided by participants. First, all of the time-outs occurred in question R-4
when participants were asked to find a non-existent method to transition between
two states. Therefore, to answer this question correctly, participants needed to
prove the absence of something to themselves.10 Some participants felt the need
to perform a brute force search of the method documentation to ensure that
10 In [31, ch.3] many forum questioners had similar problems with missing state tran-

sitions.

174 J. Sunshine, J.D. Herbsleb, and J. Aldrich

no methods were available that perfumed the transition. Of particular note,
Plaiddoc participants didn’t seem to trust that the ForwardOnly section of the
Plaiddoc contained all of the potential methods.

It is also worth noting that question U-5 is in the same category but resulted
in no time-outs. One possible explanation is that the ResultSet interface is much
larger than the the URLConnection class,so it is easier to be confident that no
such method exists. In addition, participants seemed to intuit that the URL-
Connection transition is missing, but not intuit that the ResultSet transition is
missing.

Second, the questions required the participants to digest a lot of text. Partic-
ipants commonly relied on heuristics and skimming to answer questions quickly.
For example, the five Javadoc participants who answered R-4 with setFetchDi-
rection matched the method name to the task and quickly confirmed the match
in the description, but did not fully digest the description text. The participant
who missed the word “scheduled” in the exception details was being similarly
hasty. This phenomenon may partially explain why Plaiddoc participants were
so much quicker than Javadoc participants, as we saw in §6.1. Plaiddoc presents
a natural heuristic to participants — when examining a method, look first at
the state it is defined in, then at its preconditions and postconditions.

Third, participants were tripped up by non-normal modes of use. We saw
that participant #19 thought only the Timer could call TimerTask methods be-
cause that is the normal mode of use. Similarly, most protocol violations throw
exceptions and are documented in the method or exception descriptions. How-
ever, scheduledExecutionTime somewhat abnormally documents the protocols in
the return value description which confused three participants. Finally, abstract
states normally map well to the primitive state of object instances. However, a
URLConnection that has been disconnected from the remote resource is not in
the Disconnected abstract state, as expected by three participants.

6.3 Learning

To answer RQ4, which asks whether state search performance improves with
practice, we alternated the order that question batches were asked of partici-
pants. As we describe in §5.3, half of the participants first received URLConnec-
tion questions and half first received Timer questions. The output variable we
discuss in this section is the ratio of total Timer batch completion time to total
URLConnection batch completion time (the "T/U ratio"). If learning occurs,
then the T/U ratio should be larger for participants who performed the Timer
batch first than for those who performed the URLConnection batch first.

In the Javadoc condition, the mean T/U ratio of the Timer first sub-condition
is 1.07 and .948 in the UrlConnection first sub-condition. This difference is not
statistically significant (p=0.695). On the other hand, in the Plaiddoc condition
the mean T/U ratio of the Timer first sub-condition is 1.50 and 0.743 in the Url-
Connection first sub-condition. An independent samples two-tailed t-test shows
that this difference is statistically significant (p=0.003).

Structuring Documentation to Support State Search 175

Table 3. Analysis of observed variance of T/U Ratio. The fixed-effects sources of
variation considered are documentation type and batch order.

Df Sum Sq Mean Sq F value Pr(>F)
DocType 1 0.06695 0.06695 0.4560 0.50914

BatchOrder 1 0.96519 0.96519 6.5737 0.02081
DocType:BatchOrder 1 0.51496 0.51496 3.5073 0.07949

We performed a two factor, fixed-effects ANOVA in which the two factors
are documentation type and batch order and the output variable is the T/U
ratio. The results are show in Table 3. This ANOVA reveals that there is a
marginally significant interaction between documentation type and batch order-
ing (p=0.079). This should be interpreted as weak evidence that task-completion
speed improved more for Plaiddoc participants than for Javadoc participants.
However, more data is needed to know for sure.

Discussion. The Plaiddoc participants performance improved significantly dur-
ing the study, which is perhaps unsurprising since Plaiddoc was new to all of the
participants. We would like to say with confidence that state-search performance
of programmers using Plaiddoc would improve over time relative to programmers
using Javadoc. However, the learning observed in the Plaiddoc condition was not
significantly stronger than the learning observed in the Javadoc condition.

6.4 State Concept Mapping

To investigate RQ5, we asked four questions to map the concepts they learned
about in training to the Timer, TimerTask, ResultSet, and URLConnection.
Plaiddoc participants responded correctly 23 of 40 times, while Javadoc partici-
pants answered correctly 25 times. This difference is not statistically significant.

Discussion. We hypothesized that Plaiddoc participant would be better at
mapping API specifics to general state concepts. We thought this because Plaid-
doc makes many state concepts more salient. There is no evidence for this hy-
pothesis in the data. Javadoc participants spent much more total time with the
documentation and they read much more of the detailed prose contained inside
the documentation. Perhaps this extra time and detail compensated for the state
salience of Plaiddoc.

We told all of the participants that timed out while trying to find a method
to transition the ResultSet from ForwardOnly to the Scrollable state, that the
method did not exist. We asked if they had any ideas about how to better
represent missing state transitions. Most didn’t give any suggestion, but one
suggested that methods that perform state transitions should be separated from
other methods so they’re easier to find. This suggestion is worthy of further
investigation.

176 J. Sunshine, J.D. Herbsleb, and J. Aldrich

6.5 Participant Preference

In the post-experiment interview we also gauged participant preferences. Nine of
ten Plaiddoc participants said that a different documentation format would have
been more helpful in performing the study. Seven selected UML state diagrams
and two selected Javadoc. The Javadoc participants also primarily selected UML
State diagrams (five of ten), followed by Javadoc (3), and Plaiddoc (2).

Discussion. The results in this study show that Plaiddoc participants outper-
formed Javadoc participants. Therefore participant preferences does not match
the measured outcome. Why do so many Plaiddoc participants prefer another
documentation format? The simplest explanation is that Plaiddoc is unfamiliar,
while Javadoc is familiar. In addition, one participant in the Plaiddoc condi-
tion who preferred Javadoc explained that he “felt lost” while using Plaiddoc. A
Plaiddoc page is divided into many more subsections (one for each state) than
a Javadoc page. Improved visual cues indicating the which state is being viewed
might alleviate this problem. Another possible reason, is that the Plaiddoc state
diagram is produced in ASCII and therefore looks old and amateurish. The state
diagram does not match well with the modern look of the rest of the page. Re-
gardless of the reason for the preference, this study’s results are a cautionary
tale for researchers who rely only on user preferences to evaluate tools.

7 Threats to Validity

In this section we discuss threats to validity of our causal claims. We divide
this section using the canonical categories of validity: construct validity, internal
validity, and external validity.

7.1 Construct Validity

We trained all participants equally, including training of Javadoc participants
to use Plaiddoc. There is some risk in this design that Javadoc participants
will be disappointed that they did not get to use Plaiddoc. They were famil-
iar with Javadoc so they may have preferred to try something new. Therefore,
Javadoc participants may have performed worse because they experienced what
Shadish [27, p. 80] calls “resentful demoralization.” Two facts suggest that de-
moralization had at most a small effect on the results: First, only two of 10
Javadoc participants said they would have preferred to use Plaiddoc in the post-
experiment interview. Second, both Javadoc and Plaiddoc are documentation
formats and neither is particularly exciting. The classic examples in which “re-
sentful demoralization” was measurable include much more severe differences
between the control group and the experimental group. Fetterman [12] describes
an experiment evaluating a job-training program in which the control group in-
cludes participants who were denied access to the training program. Walther [35]

Structuring Documentation to Support State Search 177

compared an experimental group that is paid a substantially higher participa-
tion reward to a control group paid much less. We would not expect to see
anywhere near as much demoralization in our study as in these studies, even for
participants who would have preferred to use Plaiddoc.

Although participants were never told explicitly, it is likely participants real-
ized that Plaiddoc was our design. Therefore, Plaiddoc participants may have
performed better and Javadoc participants worse because of “experimenter ex-
pectancies” [25, p. 224]. In other words, the very fact that we expected Plaiddoc
to outperform Javadoc and the participants could possibly infer this expectation,
may have impacted in the result in the direction we expected.

7.2 Internal Validity

The focus of this study’s design is internal validity. Participants were randomly
assigned, participants were isolated from outside events in equivalent settings, we
used a between-subjects design, and there was no attrition during the study. All
that being said, one threat to internal validity is worth mentioning. Participants
were assigned to conditions randomly, but it could be that the participants in the
Plaiddoc group were better equipped to answer the questions in the study. We
discussed the distribution of programming experience in §6.1 and showed that
it did not seem to have an effect on outcomes. However, it could be the groups
differ along another dimension—for example, programming skill, experience with
protocols, intelligence—that we did not measure and this impacted the results.

7.3 External Validity

Our earlier qualitative studies and the experiment discussed here have opposing
strengths and weaknesses. The qualitative studies emphasize external validity
with realistic tasks and professional participants, but cannot be used to draw
conclusions about causal relationships. The experiment in this paper focuses
on internal validity with a carefully controlled experimental design that allows
strong causal conclusions. However, the external validity of the experiment is
enhanced because participants performed tasks in which they were required to
tackle protocol programming barriers observed in the qualitative studies. There-
fore, the experimental results are likely to translate to real-world problems and
the processes that programmers use to solve them. All that being said, the threats
to external validity in those earlier studies extend into this study [31, §3.4].

The state search tasks are connected to our qualitative results—they use the
same APIs that were problematic for Stack Overflow questioners and they are
instances of the state search categories that were observed repeatedly in the
observational study. However, the non-state search tasks did not come from
developer forums or any other real-world programming resource. Instead they
were designed to simply not make use of Plaiddoc’s novel state features. In our
results, Plaiddoc participants did not perform worse on these tasks than Javadoc
participants. However, it could be that there are other important categories of
tasks for which Javadoc is better than Plaiddoc.

178 J. Sunshine, J.D. Herbsleb, and J. Aldrich

Another noteworthy external validity concern in the experiment here has to
do with the student population studied. None of the participants seem to have
struggled with the concept of preconditions and postconditions which are used
heavily by Plaiddoc. This may be because the concept as used in the study
is simple, but it may also be that the Carnegie Mellon student population we
studied is especially exposed to formal methods. The very first course in the
Carnegie Mellon undergraduate computer science sequence teaches students to
verify imperative programs with Hoare-style contracts.

8 Type Annotations as Documentation

Many research groups have developed specialized type-based annotation sys-
tems for particular domains. Prominent examples include information flow [26],
thread usage policies [33], and application partitioning [7]. In the vast majority
of these systems, including all of the examples just cited, the primary bene-
fit of the annotation systems touted by their creators is either verification or
automated code generation. The preconditions and postconditions that appear
next to methods in Plaiddoc are essentially state-based type annotations. There-
fore, this study provides indirect evidence that type based annotations can have
benefits as documentation.

In the last few years, there have been a flurry of studies comparing the benefits
of static and dynamic types [16,29,17]. This research suggests that dynamic
types have an advantage for small, greenfield tasks, while static types have an
advantage for larger, maintenance tasks.

The most closely related study [22], evaluated the benefits of type annota-
tions in undocumented software. The results were mixed—types were signifi-
cantly helpful in some tasks, and significantly harmful in others. One possible
interpretation of the results is that types were helpful in tasks that were more
complex (involved more classes) and harmful otherwise. Our results provide a
clearer picture — Plaiddoc provided benefits in every state-search category. In
their study, programmers performed programming tasks using two “structurally
identical,” synthetic, undocumented APIs. In our study, programmers answered
search questions with well-documented real-world APIs. One important con-
sequence of these differences, is that our study evaluates types only for their
documentation purpose, while theirs evaluates the collective value of both static-
checking and types as documentation.

9 Conclusion

In this study we demonstrate the effectiveness of Plaiddoc documentation rela-
tive to Javadoc documentation in answering state-related questions. The barrier
to entry for using the Plaiddoc tool are minimal—only 1-3 annotations are re-
quired per method. We annotated all three APIs in less than one day of work.
The main barrier to using Plaiddoc in production is training programmers to
consume the documentation effectively. Untrained participants in pilot studies

Structuring Documentation to Support State Search 179

were not able to use Plaiddoc effectively. Even basic protocol concepts were
foreign to our participants before training. That said, the training we provided
was very quick and required no specialized knowledge. Regardless, it seems clear
that any mainstream language that adopts first-class state constructs should
also adopt a Plaiddoc like documentation structure. More generally, our study
shows that state-based type annotations provide documentation-related bene-
fits even for well-documented code. Thus, our results open the door to future
work investigating the documentation-related productivity benefits of type-like
annotations in a broad range of domains.

Acknowledgements. This work was supported by supported by the U.S. Na-
tional Science Foundation under grants #CCF-1116907 and #IIS-1111750. Na-
tional Security Agency lablet contract #H98230-14-C-0140, and the Air Force
Research Laboratory.

References

1. Beckman, N.E., Kim, D., Aldrich, J.: An empirical study of object protocols in
the wild. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 2–26. Springer,
Heidelberg (2011)

2. Beckman, N.E., Nori, A.V.: Probabilistic, modular and scalable inference of types-
tate specifications. In: Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2011, pp. 211–221. ACM,
New York (2011)

3. Bierhoff, K., Beckman, N.E., Aldrich, J.: Practical API protocol checking with
access permissions. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
195–219. Springer, Heidelberg (2009)

4. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing
PKCS#11 security tokens. In: Proceedings of the 17th ACM Conference on Com-
puter and Communications Security, CCS 2010, pp. 260–269. ACM, New York
(2010)

5. Chandler, P., Sweller, J.: Cognitive load theory and the format of instruction.
Cognition and Instruction 8(4), 293–332 (1991)

6. Chi, M.T., Bassok, M., Lewis, M.W., Reimann, P., Glaser, R.: Self-explanations:
How students study and use examples in learning to solve problems. Cognitive
Science 13(2), 145–182 (1989)

7. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Secure
web applications via automatic partitioning. In: Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, SOSP 2007, pp. 31–44.
ACM, New York (2007)

8. de Caso, G., Braberman, V., Garbervetsky, D., Uchitel, S.: Program abstractions
for behaviour validation. In: Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, pp. 381–390. ACM, New York (2011)

9. Dekel, U., Herbsleb, J.D.: Improving API documentation usability with knowledge
pushing. In: Proceedings of the 31st International Conference on Software Engi-
neering, ICSE 2009, pp. 320–330 (2009)

10. Dwyer, M.B., Kinneer, A., Elbaum, S.: Adaptive online program analysis. In: Pro-
ceedings of the 29th international conference on Software Engineering, ICSE 2007,
pp. 220–229. IEEE Computer Society, Washington, DC (2007)

180 J. Sunshine, J.D. Herbsleb, and J. Aldrich

11. Ellis, B., Stylos, J., Myers, B.: The factory pattern in API design: A usability
evaluation. In: Proceedings of the 29th international conference on Software Engi-
neering, ICSE 2007, pp. 302–312 (2007)

12. Fetterman, D.M.: Ibsen’s baths: Reactivity and insensitivity (a misapplication of
the treatment-control design in a national evaluation). Educational Evaluation and
Policy Analysis 4(3), 261–279 (1982)

13. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proceedings
of the ACM SIGPLAN 2002 Conference on Programming language design and
implementation, PLDI 2002, pp. 1–12. ACM, New York (2002)

14. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The
most dangerous code in the world: Validating SSL certificates in non-browser soft-
ware. In: Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security, CCS 2012, pp. 38–49. ACM, New York (2012)

15. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: a
‘cognitive dimensions’ framework. Journal of Visual Languages & Computing 7(2),
131–174 (1996)

16. Hanenberg, S.: An experiment about static and dynamic type systems: Doubts
about the positive impact of static type systems on development time. In: Pro-
ceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA 2010, pp. 22–35. ACM, New York
(2010)

17. Hanenberg, S., Kleinschmager, S., Robbes, R., Tanter, É., Stefik, A.: An empir-
ical study on the impact of static typing on software maintainability. Empirical
Software Engineering, 1–48 (2013)

18. Holmes, R., Walker, R.J., Murphy, G.C.: Strathcona example recommendation
tool. In: Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE-13, pp. 237–240. ACM, New York (2005)

19. Jaspan, C.N.: Proper Plugin Protocols. PhD thesis, Carnegie Mellon University.
Technical Report: CMU-ISR-11-116 (December 2011)

20. John, B.E., Kieras, D.E.: The GOMS family of user interface analysis techniques:
Comparison and contrast. ACM Trans. Comput.-Hum. Interact. 3(4), 320–351
(1996)

21. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science 11(1), 65–100 (1987)

22. Mayer, C., Hanenberg, S., Robbes, R., Tanter, É., Stefik, A.: An empirical study of
the influence of static type systems on the usability of undocumented software. In:
Proceedings of the ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, pp. 683–702. ACM (2012)

23. Neal, L.R.: A system for example-based programming. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI 1989, pp.
63–68. ACM, New York (1989)

24. Robillard, M.P., Bodden, E., Kawrykow, D., Mezini, M., Ratchford, T.: Auto-
mated api property inference techniques. IEEE Transactions on Software Engi-
neering 39(5), 613–637 (2013)

25. Rosenthal, R., Rosnow, R.L.: Essential of Behavioiural Research: Methods and
Data Analysis, 3rd edn. McGraw-Hill Higher Education, New York (2008)

26. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE Journal
on Selected Areas in Communications 21(1), 5–19 (2003)

Structuring Documentation to Support State Search 181

27. Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Wadsworth Cengage
Learning (2002)

28. Somorovsky, J., Mayer, A., Schwenk, J., Kampmann, M., Jensen, M.: On breaking
SAML: Be whoever you want to be. In: Proceedings of the 21st USENIX Conference
on Security Symposium, Security, vol. 12, p. 21 (2012)

29. Stuchlik, A., Hanenberg, S.: Static vs. dynamic type systems: An empirical study
about the relationship between type casts and development time. In: Proceedings
of the 7th Symposium on Dynamic Languages, DLS 2011, pp. 97–106. ACM, New
York (2011)

30. Stylos, J., Myers, B.A.: The implications of method placement on API learnability.
In: Proceedings of the 16th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, SIGSOFT 2008/FSE-16, pp. 105–112. ACM, New
York (2008)

31. Sunshine, J.: Protocol Programmability. PhD thesis, Carnegie Mellon University
(December 2013)

32. Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, E.: First-class state change
in plaid. In: Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA 2011, pp.
713–732. ACM, New York (2011)

33. Sutherland, D.F., Scherlis, W.L.: Composable thread coloring. In: Proceedings of
the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP 2010, pp. 233–244. ACM, New York (2010)

34. Ullmer, B., Ishii, H.: Emerging frameworks for tangible user interfaces. IBM Sys-
tems Journal 39(3.4), 915–931 (2000)

35. Walther, B.J., Ross, A.S.: The effect on behavior of being in a control group. Basic
and Applied Social Psychology 3(4), 259–266 (1982)

36. Whaley, J., Martin, M.C., Lam, M.S.: Automatic extraction of object-oriented
component interfaces. In: Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2002, pp. 218–228. ACM,
New York (2002)

37. Ye, Y., Fischer, G., Reeves, B.: Integrating active information delivery and reuse
repository systems. In: Proceedings of the 8th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering: Twenty-first Century Applica-
tions, SIGSOFT 2000/FSE-8, pp. 60–68. ACM, New York (2000)

38. Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: Mining and recommending
API usage patterns. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
318–343. Springer, Heidelberg (2009)

	Structuring Documentation to Support State Search: A Laboratory Experiment about Protocol Programming
	1 Introduction
	2 Background and Related Work
	3 Plaiddoc
	4 State Search Categories
	5 Methodology
	5.1 Recruitment
	5.2 Training
	5.3 Experimental Setup
	5.4 Tasks
	5.5 Post-experiment Interview

	6 Results
	6.1 Task Completion Time
	6.2 Correctness
	6.3 Learning
	6.4 State Concept Mapping
	6.5 Participant Preference

	7 Threats to Validity
	7.1 Construct Validity
	7.2 Internal Validity
	7.3 External Validity

	8 Type Annotations as Documentation
	9 Conclusion
	References

